Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genotype variation in bark texture drives lichen community assembly across multiple environments.

Identifieur interne : 001D27 ( Main/Exploration ); précédent : 001D26; suivant : 001D28

Genotype variation in bark texture drives lichen community assembly across multiple environments.

Auteurs : L J Lamit ; M K Lau ; R Reese Naesborg ; T. Wojtowicz ; T G Whitham ; C A Gehring

Source :

RBID : pubmed:26230017

Descripteurs français

English descriptors

Abstract

A major goal of community genetics is to understand the influence of genetic variation within a species on ecological communities. Although well-documented for some organisms, additional research is necessary to understand the relative and interactive effects of genotype and environment on biodiversity, identify mechanisms through which tree genotype influences communities, and connect this emerging field with existing themes in ecology. We employ an underutilized but ecologically significant group of organisms, epiphytic bark lichens, to understand the relative importance of Populus angustifolia (narrowleaf cottonwood) genotype and environment on associated organisms within the context of community assembly and host ontogeny. Several key findings emerged. (1) In a single common garden, tree genotype explained 18-33% and 51% of the variation in lichen community variables and rough bark cover, respectively. (2) Across replicated common gardens, tree genotype affected lichen species richness, total lichen cover, lichen species composition, and rough bark cover, whereas environment only influenced composition and there were no genotype by environment interactions. (3) Rough bark cover was positively correlated with total lichen cover and richness, and was associated with a shift in species composition; these patterns occurred with variation in rough bark cover among tree genotypes of the same age in common gardens and with increasing rough bark cover along a -40 year tree age gradient in a natural riparian stand. (4) In a common garden, 20-year-old parent trees with smooth bark had poorly developed lichen communities, similar to their 10-year-old ramets (root suckers) growing in close proximity, while parent trees with high rough bark cover had more developed communities than their ramets. These findings indicate that epiphytic lichens are influenced by host genotype, an effect that is robust across divergent environments. Furthermore, the response to tree genotype is likely the result of genetic variation in the timing of the ontogenetic shift from smooth to rough bark allowing communities on some genotypes to assemble faster than those on other genotypes. Organisms outside the typical sphere of community genetics, such as lichens, can help address critical issues and connect plant genotype effects to long-established streams of biological research, such as ontogeny and community assembly.

DOI: 10.1890/14-1007.1
PubMed: 26230017


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genotype variation in bark texture drives lichen community assembly across multiple environments.</title>
<author>
<name sortKey="Lamit, L J" sort="Lamit, L J" uniqKey="Lamit L" first="L J" last="Lamit">L J Lamit</name>
</author>
<author>
<name sortKey="Lau, M K" sort="Lau, M K" uniqKey="Lau M" first="M K" last="Lau">M K Lau</name>
</author>
<author>
<name sortKey="Naesborg, R Reese" sort="Naesborg, R Reese" uniqKey="Naesborg R" first="R Reese" last="Naesborg">R Reese Naesborg</name>
</author>
<author>
<name sortKey="Wojtowicz, T" sort="Wojtowicz, T" uniqKey="Wojtowicz T" first="T" last="Wojtowicz">T. Wojtowicz</name>
</author>
<author>
<name sortKey="Whitham, T G" sort="Whitham, T G" uniqKey="Whitham T" first="T G" last="Whitham">T G Whitham</name>
</author>
<author>
<name sortKey="Gehring, C A" sort="Gehring, C A" uniqKey="Gehring C" first="C A" last="Gehring">C A Gehring</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26230017</idno>
<idno type="pmid">26230017</idno>
<idno type="doi">10.1890/14-1007.1</idno>
<idno type="wicri:Area/Main/Corpus">001B90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B90</idno>
<idno type="wicri:Area/Main/Curation">001B90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B90</idno>
<idno type="wicri:Area/Main/Exploration">001B90</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genotype variation in bark texture drives lichen community assembly across multiple environments.</title>
<author>
<name sortKey="Lamit, L J" sort="Lamit, L J" uniqKey="Lamit L" first="L J" last="Lamit">L J Lamit</name>
</author>
<author>
<name sortKey="Lau, M K" sort="Lau, M K" uniqKey="Lau M" first="M K" last="Lau">M K Lau</name>
</author>
<author>
<name sortKey="Naesborg, R Reese" sort="Naesborg, R Reese" uniqKey="Naesborg R" first="R Reese" last="Naesborg">R Reese Naesborg</name>
</author>
<author>
<name sortKey="Wojtowicz, T" sort="Wojtowicz, T" uniqKey="Wojtowicz T" first="T" last="Wojtowicz">T. Wojtowicz</name>
</author>
<author>
<name sortKey="Whitham, T G" sort="Whitham, T G" uniqKey="Whitham T" first="T G" last="Whitham">T G Whitham</name>
</author>
<author>
<name sortKey="Gehring, C A" sort="Gehring, C A" uniqKey="Gehring C" first="C A" last="Gehring">C A Gehring</name>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="ISSN">0012-9658</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ecosystem (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Lichens (classification)</term>
<term>Lichens (physiology)</term>
<term>Linear Models (MeSH)</term>
<term>Plant Bark (genetics)</term>
<term>Plant Bark (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Génotype (MeSH)</term>
<term>Lichens (classification)</term>
<term>Lichens (physiologie)</term>
<term>Modèles linéaires (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Écorce (génétique)</term>
<term>Écorce (physiologie)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Lichens</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Bark</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Lichens</term>
<term>Populus</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lichens</term>
<term>Plant Bark</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Genotype</term>
<term>Linear Models</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Génotype</term>
<term>Lichens</term>
<term>Modèles linéaires</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A major goal of community genetics is to understand the influence of genetic variation within a species on ecological communities. Although well-documented for some organisms, additional research is necessary to understand the relative and interactive effects of genotype and environment on biodiversity, identify mechanisms through which tree genotype influences communities, and connect this emerging field with existing themes in ecology. We employ an underutilized but ecologically significant group of organisms, epiphytic bark lichens, to understand the relative importance of Populus angustifolia (narrowleaf cottonwood) genotype and environment on associated organisms within the context of community assembly and host ontogeny. Several key findings emerged. (1) In a single common garden, tree genotype explained 18-33% and 51% of the variation in lichen community variables and rough bark cover, respectively. (2) Across replicated common gardens, tree genotype affected lichen species richness, total lichen cover, lichen species composition, and rough bark cover, whereas environment only influenced composition and there were no genotype by environment interactions. (3) Rough bark cover was positively correlated with total lichen cover and richness, and was associated with a shift in species composition; these patterns occurred with variation in rough bark cover among tree genotypes of the same age in common gardens and with increasing rough bark cover along a -40 year tree age gradient in a natural riparian stand. (4) In a common garden, 20-year-old parent trees with smooth bark had poorly developed lichen communities, similar to their 10-year-old ramets (root suckers) growing in close proximity, while parent trees with high rough bark cover had more developed communities than their ramets. These findings indicate that epiphytic lichens are influenced by host genotype, an effect that is robust across divergent environments. Furthermore, the response to tree genotype is likely the result of genetic variation in the timing of the ontogenetic shift from smooth to rough bark allowing communities on some genotypes to assemble faster than those on other genotypes. Organisms outside the typical sphere of community genetics, such as lichens, can help address critical issues and connect plant genotype effects to long-established streams of biological research, such as ontogeny and community assembly.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26230017</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0012-9658</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>96</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Genotype variation in bark texture drives lichen community assembly across multiple environments.</ArticleTitle>
<Pagination>
<MedlinePgn>960-71</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A major goal of community genetics is to understand the influence of genetic variation within a species on ecological communities. Although well-documented for some organisms, additional research is necessary to understand the relative and interactive effects of genotype and environment on biodiversity, identify mechanisms through which tree genotype influences communities, and connect this emerging field with existing themes in ecology. We employ an underutilized but ecologically significant group of organisms, epiphytic bark lichens, to understand the relative importance of Populus angustifolia (narrowleaf cottonwood) genotype and environment on associated organisms within the context of community assembly and host ontogeny. Several key findings emerged. (1) In a single common garden, tree genotype explained 18-33% and 51% of the variation in lichen community variables and rough bark cover, respectively. (2) Across replicated common gardens, tree genotype affected lichen species richness, total lichen cover, lichen species composition, and rough bark cover, whereas environment only influenced composition and there were no genotype by environment interactions. (3) Rough bark cover was positively correlated with total lichen cover and richness, and was associated with a shift in species composition; these patterns occurred with variation in rough bark cover among tree genotypes of the same age in common gardens and with increasing rough bark cover along a -40 year tree age gradient in a natural riparian stand. (4) In a common garden, 20-year-old parent trees with smooth bark had poorly developed lichen communities, similar to their 10-year-old ramets (root suckers) growing in close proximity, while parent trees with high rough bark cover had more developed communities than their ramets. These findings indicate that epiphytic lichens are influenced by host genotype, an effect that is robust across divergent environments. Furthermore, the response to tree genotype is likely the result of genetic variation in the timing of the ontogenetic shift from smooth to rough bark allowing communities on some genotypes to assemble faster than those on other genotypes. Organisms outside the typical sphere of community genetics, such as lichens, can help address critical issues and connect plant genotype effects to long-established streams of biological research, such as ontogeny and community assembly.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lamit</LastName>
<ForeName>L J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lau</LastName>
<ForeName>M K</ForeName>
<Initials>MK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Naesborg</LastName>
<ForeName>R Reese</ForeName>
<Initials>RR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wojtowicz</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whitham</LastName>
<ForeName>T G</ForeName>
<Initials>TG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gehring</LastName>
<ForeName>C A</ForeName>
<Initials>CA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="Y">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008011" MajorTopicYN="N">Lichens</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024301" MajorTopicYN="N">Plant Bark</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26230017</ArticleId>
<ArticleId IdType="doi">10.1890/14-1007.1</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Gehring, C A" sort="Gehring, C A" uniqKey="Gehring C" first="C A" last="Gehring">C A Gehring</name>
<name sortKey="Lamit, L J" sort="Lamit, L J" uniqKey="Lamit L" first="L J" last="Lamit">L J Lamit</name>
<name sortKey="Lau, M K" sort="Lau, M K" uniqKey="Lau M" first="M K" last="Lau">M K Lau</name>
<name sortKey="Naesborg, R Reese" sort="Naesborg, R Reese" uniqKey="Naesborg R" first="R Reese" last="Naesborg">R Reese Naesborg</name>
<name sortKey="Whitham, T G" sort="Whitham, T G" uniqKey="Whitham T" first="T G" last="Whitham">T G Whitham</name>
<name sortKey="Wojtowicz, T" sort="Wojtowicz, T" uniqKey="Wojtowicz T" first="T" last="Wojtowicz">T. Wojtowicz</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26230017
   |texte=   Genotype variation in bark texture drives lichen community assembly across multiple environments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26230017" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020